Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.

Identifieur interne : 000A24 ( Main/Exploration ); précédent : 000A23; suivant : 000A25

Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.

Auteurs : Nuria Pujol-Carrion [Espagne] ; Maria Angeles De La Torre-Ruiz

Source :

RBID : pubmed:20889785

Descripteurs français

English descriptors

Abstract

Grx3 and Grx4 are two monothiol glutaredoxins of Saccharomyces cerevisiae that have previously been characterized as regulators of Aft1 localization and therefore of iron homeostasis. In this study, we present data showing that both Grx3 and Grx4 have new roles in actin cytoskeleton remodeling and in cellular defenses against oxidative stress caused by reactive oxygen species (ROS) accumulation. The Grx4 protein plays a unique role in the maintenance of actin cable integrity, which is independent of its role in the transcriptional regulation of Aft1. Grx3 plays an additive and redundant role, in combination with Grx4, in the organization of the actin cytoskeleton, both under normal conditions and in response to external oxidative stress. Each Grx3 and Grx4 protein contains a thioredoxin domain sequence (Trx), followed by a glutaredoxin domain (Grx). We performed functional analyses of each of the two domains and characterized different functions for them. Each of the two Grx domains plays a role in ROS detoxification and cell viability. However, the Trx domain of each Grx4 and Grx3 protein acts independently of its respective Grx domain in a novel function that involves the polarization of the actin cytoskeleton, which also determines cell resistance against oxidative conditions. Finally, we present experimental evidence demonstrating that Grx4 behaves as an antioxidant protein increasing cell survival under conditions of oxidative stress.

DOI: 10.1128/AEM.01755-10
PubMed: 20889785
PubMed Central: PMC2988586


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.</title>
<author>
<name sortKey="Pujol Carrion, Nuria" sort="Pujol Carrion, Nuria" uniqKey="Pujol Carrion N" first="Nuria" last="Pujol-Carrion">Nuria Pujol-Carrion</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Ciencias Médicas Básicas-IRBLleida, Facultad de Medicina, Universidad de Lleida, C/Montserrat Roig no. 2, 25008 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Ciencias Médicas Básicas-IRBLleida, Facultad de Medicina, Universidad de Lleida, C/Montserrat Roig no. 2, 25008 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De La Torre Ruiz, Maria Angeles" sort="De La Torre Ruiz, Maria Angeles" uniqKey="De La Torre Ruiz M" first="Maria Angeles" last="De La Torre-Ruiz">Maria Angeles De La Torre-Ruiz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20889785</idno>
<idno type="pmid">20889785</idno>
<idno type="doi">10.1128/AEM.01755-10</idno>
<idno type="pmc">PMC2988586</idno>
<idno type="wicri:Area/Main/Corpus">000968</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000968</idno>
<idno type="wicri:Area/Main/Curation">000968</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000968</idno>
<idno type="wicri:Area/Main/Exploration">000968</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.</title>
<author>
<name sortKey="Pujol Carrion, Nuria" sort="Pujol Carrion, Nuria" uniqKey="Pujol Carrion N" first="Nuria" last="Pujol-Carrion">Nuria Pujol-Carrion</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Ciencias Médicas Básicas-IRBLleida, Facultad de Medicina, Universidad de Lleida, C/Montserrat Roig no. 2, 25008 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Ciencias Médicas Básicas-IRBLleida, Facultad de Medicina, Universidad de Lleida, C/Montserrat Roig no. 2, 25008 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De La Torre Ruiz, Maria Angeles" sort="De La Torre Ruiz, Maria Angeles" uniqKey="De La Torre Ruiz M" first="Maria Angeles" last="De La Torre-Ruiz">Maria Angeles De La Torre-Ruiz</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (metabolism)</term>
<term>Cytoskeleton (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Microbial Viability (drug effects)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Reactive Oxygen Species (toxicity)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actines (métabolisme)</term>
<term>Cytosquelette (métabolisme)</term>
<term>Espèces réactives de l'oxygène (toxicité)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Viabilité microbienne (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
<term>Glutaredoxins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Microbial Viability</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Viabilité microbienne</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoskeleton</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actines</term>
<term>Cytosquelette</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidative Stress</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Stress oxydatif</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Grx3 and Grx4 are two monothiol glutaredoxins of Saccharomyces cerevisiae that have previously been characterized as regulators of Aft1 localization and therefore of iron homeostasis. In this study, we present data showing that both Grx3 and Grx4 have new roles in actin cytoskeleton remodeling and in cellular defenses against oxidative stress caused by reactive oxygen species (ROS) accumulation. The Grx4 protein plays a unique role in the maintenance of actin cable integrity, which is independent of its role in the transcriptional regulation of Aft1. Grx3 plays an additive and redundant role, in combination with Grx4, in the organization of the actin cytoskeleton, both under normal conditions and in response to external oxidative stress. Each Grx3 and Grx4 protein contains a thioredoxin domain sequence (Trx), followed by a glutaredoxin domain (Grx). We performed functional analyses of each of the two domains and characterized different functions for them. Each of the two Grx domains plays a role in ROS detoxification and cell viability. However, the Trx domain of each Grx4 and Grx3 protein acts independently of its respective Grx domain in a novel function that involves the polarization of the actin cytoskeleton, which also determines cell resistance against oxidative conditions. Finally, we present experimental evidence demonstrating that Grx4 behaves as an antioxidant protein increasing cell survival under conditions of oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20889785</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>7826-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01755-10</ELocationID>
<Abstract>
<AbstractText>Grx3 and Grx4 are two monothiol glutaredoxins of Saccharomyces cerevisiae that have previously been characterized as regulators of Aft1 localization and therefore of iron homeostasis. In this study, we present data showing that both Grx3 and Grx4 have new roles in actin cytoskeleton remodeling and in cellular defenses against oxidative stress caused by reactive oxygen species (ROS) accumulation. The Grx4 protein plays a unique role in the maintenance of actin cable integrity, which is independent of its role in the transcriptional regulation of Aft1. Grx3 plays an additive and redundant role, in combination with Grx4, in the organization of the actin cytoskeleton, both under normal conditions and in response to external oxidative stress. Each Grx3 and Grx4 protein contains a thioredoxin domain sequence (Trx), followed by a glutaredoxin domain (Grx). We performed functional analyses of each of the two domains and characterized different functions for them. Each of the two Grx domains plays a role in ROS detoxification and cell viability. However, the Trx domain of each Grx4 and Grx3 protein acts independently of its respective Grx domain in a novel function that involves the polarization of the actin cytoskeleton, which also determines cell resistance against oxidative conditions. Finally, we present experimental evidence demonstrating that Grx4 behaves as an antioxidant protein increasing cell survival under conditions of oxidative stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pujol-Carrion</LastName>
<ForeName>Nuria</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Ciencias Médicas Básicas-IRBLleida, Facultad de Medicina, Universidad de Lleida, C/Montserrat Roig no. 2, 25008 Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de la Torre-Ruiz</LastName>
<ForeName>Maria Angeles</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516012">Grx4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003599" MajorTopicYN="N">Cytoskeleton</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20889785</ArticleId>
<ArticleId IdType="pii">AEM.01755-10</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01755-10</ArticleId>
<ArticleId IdType="pmc">PMC2988586</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1996 Apr 9;35(14):4403-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8605189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Dec 15;31(12):1624-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11744337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1751-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Jan 15;377(Pt 2):395-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14519092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 6;330(2):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8367443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1996 Feb 15;16(4):1324-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8778284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Oct;1793(10):1588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19654027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Sep 24;274(39):27590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10488097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 1994 Sep;102 Suppl 3:11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7843082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Environ Res. 2008 Jul;66(1):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 9;408(6809):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 18;285(25):19521-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Sep;64(Pt 9):927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Sep 3;41(35):10787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2009 Dec;9(8):1196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 11;280(10):9149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12138088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PCR Methods Appl. 1994 Dec;4(3):S131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7580894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2002 May 1;32(9):927-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Nov 1;31(9):1075-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11677040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 21;275(3):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;495:41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Feb;39(3):533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1260-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18914-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1984 Mar;98(3):934-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6365931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jan 15;21(2):148-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17167106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Sep 16;187(2):949-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1530649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 21;415(6874):871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11859360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Apr;18(4):1359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Sep;70(3):605-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2005 Mar;32(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15865206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2005 Jul;51(7):613-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16175211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):43495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12171921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Dec;5(6):564-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12457699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2004;5(4):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2004;20:559-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Jun 28;65(7):1093-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1905977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="De La Torre Ruiz, Maria Angeles" sort="De La Torre Ruiz, Maria Angeles" uniqKey="De La Torre Ruiz M" first="Maria Angeles" last="De La Torre-Ruiz">Maria Angeles De La Torre-Ruiz</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Pujol Carrion, Nuria" sort="Pujol Carrion, Nuria" uniqKey="Pujol Carrion N" first="Nuria" last="Pujol-Carrion">Nuria Pujol-Carrion</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20889785
   |texte=   Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20889785" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020